MEMBERSHIP

作品数:229被引量:128H指数:6
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:吕鸣王瀚波陈英费斐石蕾更多>>
相关机构:上海交通大学燕山大学山东大学南京理工大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划上海市科学技术发展基金中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Different Disruptions
《China Today》2025年第3期53-55,共3页AUGUSTO SOTO 
While the Trump administration’s new measures mean negative repercussions for the entire world,Chinese AI company DeekSeek’s innovation is a gift for the progress of all.THE United States ending its World Health Org...
关键词:sharply EXPANSION MEMBERSHIP 
Renew and Reap
《Beijing Review》2025年第9期36-37,共2页Li Xiaoyang 
Chen Lili,an employee at a Beijing-based online company,recently purchased a new iPhone 16(256 GB)from Chinese online retailer JD.com.Thanks to newly introduced subsidies for pigital products and additional coupons fr...
关键词:RETAIL PRICE MEMBERSHIP 
Optimism feeds innovation for BTMA members
《China Textile》2025年第1期48-49,共2页
The British Textile Machinery Association(BTMA)is hitting the ground running in 2025,having expanded membership to its highest level in many decades,reflecting a continuing push into many other fields beyond commodity...
关键词:COMPANIES MEMBERSHIP COMMODITY 
Dual defense:Combining preemptive exclusion of members and knowledge distillation to mitigate membership inference attacks
《Journal of Information and Intelligence》2025年第1期68-90,共23页Jun Niu Peng Liu Chunhui Huang Yangming Zhang Moxuan Zeng Kuo Shen Yangzhong Wang Suyu An Yulong Shen Xiaohong Jiang Jianfeng Ma He Wang Gaofei Wu Anmin Fu Chunjie Cao Xiaoyan Zhu Yuqing Zhang 
supported by the National Natural Science Foundation of China(61941105,61772406,U2336203,U1836210);National Key Research and Development Program of China(2023YFB3106400,2023QY1202);Beijing Natural Science Foundation(4242031);the Key Research and Development Science and Technology of Hainan Province(GHYF2022010).
Membership inference(MI)attacks threaten user privacy through determining if a given data example has been used to train a target model.Existing MI defenses protect the membership privacy through preemptive exclusion ...
关键词:Machine learning Membership inference defenses Preemptive exclusion Knowledge distillation 
THE EVER-GROWING BRICS OPENS A NEW ERA FOR THE GLOBAL SOUTH Indonesia’s membership in BRICS will strengthen multilateral cooperation and amplify its regional influence
《China Report ASEAN》2025年第2期72-73,共2页Rabi Sankar Bosu 
The entry of Indonesia,the largest economy in Southeast Asia,into the BRICS as the 10th full member has captured much attention from the global media.The expansion of BRICS–an intergovernmental organization of emergi...
关键词:MEMBERSHIP COLLECTIVE bringing 
Breaking boundaries for sustainable and inclusive growth-ISO Annual Meeting 2024
《China Standardization》2024年第6期48-49,共2页Fang Luofan 
The 46th Annual Meeting of ISO was held in Cartagena,Colombia.The event was attended by more than 700 representatives of ISO members,as well as international and regional organizations,with more than2,200 representati...
关键词:MEMBERSHIP SUSTAINABLE approved 
POISED TO PARTICIPATE
《Beijing Review》2024年第44期22-23,共2页Nilantha Ilangamuwa 
Sri Lanka's aspiration to join BRICS marks a significant turning point in its foreign policy evolution-a journey shaped by colonial legacies,non-alignment principles,and the ongoing quest for debt sustainability.Durin...
关键词:MEMBERSHIP TURNING POLICY 
A survey on membership inference attacks and defenses in machine learning
《Journal of Information and Intelligence》2024年第5期404-454,共51页Jun Niu Peng Liu Xiaoyan Zhu Kuo Shen Yuecong Wang Haotian Chi Yulong Shen Xiaohong Jiang Jianfeng Ma Yuqing Zhang 
supported by National Natural Science Foundation of China(61941105,61772406,and U2336203);National Key Research and Development Program of China(2023QY1202);Beijing Natural Science Foundation(4242031).
Membership inference(MI)attacks mainly aim to infer whether a data record was used to train a target model or not.Due to the serious privacy risks,MI attacks have been attracting a tremendous amount of attention in th...
关键词:Machine learning Privacy and security Membership inference attacks Defensive techniques 
Protecting LLMs against Privacy Attacks While Preserving Utility
《Journal of Information Security》2024年第4期448-473,共26页Gunika Dhingra Saumil Sood Zeba Mohsin Wase Arshdeep Bahga Vijay K. Madisetti 
The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Infor...
关键词:Large Language Models PII Leakage PRIVACY Memorization Membership Inference Attack (MIA) DEFENSES Generative Adversarial Networks (GANs) Synthetic Data 
Black-box membership inference attacks based on shadow model
《The Journal of China Universities of Posts and Telecommunications》2024年第4期1-16,共16页Han Zhen Zhou Wen'an Han Xiaoxuan Wu Jie 
Membership inference attacks on machine learning models have drawn significant attention.While current research primarily utilizes shadow modeling techniques,which require knowledge of the target model and training da...
关键词:machine learning membership inference attack shadow model black-box model 
检索报告 对象比较 聚类工具 使用帮助 返回顶部