数学中的无限  

在线阅读下载全文

作  者:A.W.Moore 隋婷婷(译) 王小塞(译) 

机构地区:[1]牛津大学哲学系 [2]牛津大学圣休学院 [3]北京大学外国哲学研究所 [4]北京大学哲学系

出  处:《外国哲学》2022年第2期261-280,共20页

摘  要:有关数学中无限的研究大部分发源于近代。首先,文章将概述德国杰出数学家格奥尔格·康托尔的思想。康托尔的研究具有深远的革命性意义,他不仅证明了无限的可比较性,还发明了用以测量无限的无穷数并展示了计算过程。然而,这一研究在康托尔的同时代人(19世纪末到20世纪初)当中引发了巨大的分歧,这也导致了康托尔精神的彻底崩溃。此外,这些研究还引发了一些新悖论,这也促成了很多数学基础性工作的崩溃,文章将阐述其中一些悖论,如罗素悖论,并讨论一些数学家,特别是戈特洛布·弗雷格的相关回应。弗雷格曾试图为数学提供一个严格可靠的基础,但罗素悖论似乎完全摧毁了他毕生的工作。文章还将进一步探讨这些悖论在数学上的后续发展,如哥德尔的研究。一个结论是,通过将无限置于正式的审视中,数学家最终为自己制造了更多难以解决的问题,他们还因此不得不考虑一些位于这门学科核心的深奥谜题。

关 键 词:算术基础 康托尔 罗素悖论 弗雷格 哥德尔 维特根斯坦 

分 类 号:O15-02[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象