检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒲月 刘贤宁[1] PU Yue;LIU Xian-ning(School of Mathematics and Statistics,Southwest University,Chongqing 400715 China)
出 处:《生物数学学报》2019年第2期181-194,共14页Journal of Biomathematics
基 金:国家自然科学基金项目(11671327).
摘 要:本文主要研究带有逆转录酶抑制剂(RTI)的HIV-1病毒模型,该模型同时具有病毒对细胞的感染和胞胞感染以及体液免疫反应和两个离散时滞的影响因素.研究了时滞对平衡点的影响.研究表明,细胞内部的时滞对感染模型的平衡点没有影响.但是,免疫时滞会改变免疫激发平衡点E2的稳定性以及导致Hopf分支的产生.当免疫时滞超过一个临界值时,Hopf分支就产生了.利用合适的李雅普诺夫函数和拉萨尔不变原理,建立了三个边界平衡点的全局稳定性.若R0<1,未感染平衡点E0是全局渐近稳定的;若R1<1<R0,免疫未激发平衡点E1是全局渐进稳定的;若R1>1,τ2=0,免疫激发平衡点E2是全局渐进稳定的.最后,通过数值模拟验证了理论的正确性.In this paper,we investigated the dynamical behavior of an HIV-1 virus model with both virus to cell and cell to cell transmissions and two discrete delay using reverse transcriptase inhibitors.We studied the effect of time delay on stability of the equilibria.The study shows the intracellular delay has no effect for the stability of the equilibria of the infection model.However,the immune delay can change the stability of the immune-activated equilibrium E2 and lead to the existence of Hopf bifurcation.Hopf bifurcation occurs when the immune delay passes a critical value.By using suitable Lyapunov functional and the LaSalle’s invariance principle,we also establish the global stabilities of the two boundary equilibria.If R0<1,the infection-free equilibrium E0 is globally asymptotically stable;if R1<1<R0,the immune-inactivated equilibrium E1 is globally asymptotically stable;if R1>1,τ2=0,the immune-activated equilibrium E2 is globally asymptotically stable.In the end,we check our theorems with numerical simulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145