检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]烟台大学数学与信息科学系,山东烟台264005
出 处:《数学的实践与认识》2007年第8期132-138,共7页Mathematics in Practice and Theory
基 金:国家自然科学基金(10626045);烟台大学博士基金(SX04B24)
摘 要:将不可压缩的广义neo-Hookean材料组成的超弹性圆柱壳径向对称运动的数学模型归结为一类非线性发展方程组的初边值问题.利用材料的不可压缩条件和边界条件求得了描述圆柱壳内表面径向运动的二阶非线性常微分方程.给出了微分方程的周期解(即圆柱壳的内表面产生非线性周期振动)的存在条件,讨论了材料参数和结构参数对方程的周期解的影响,并给出了相应的数值模拟.The radial symmetric motion of a hyper-elastic cylindrical shell composed of the incompressible generalized neo-Hookean material was described as an initial and boundary value problem of a class of nonlinear evolution equations.A second-order nonlinear ordinary differential equation that describes the motion about the radial direction of the inner-surface of the shell was obtained by using the incompressibility constraint and boundary conditions.Existence conditions of periodic solution of the differential equation(i.e,the inner-surface of cylindrical shell producing nonlinear periodic oscillation) are presented.The effects of material and structure parameters on the periodic solution of the equation are discussed,and the corresponding numerical simulations are also carried out.
关 键 词:不可压缩的超弹性圆柱壳 非线性发展方程组 周期解 非线性周期振动
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.22.153