检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:褚永明
出 处:《佳木斯教育学院学报》2011年第4期187-188,共2页Journal of Jiamusi Education Institute
摘 要:本文首先给出了控制收敛定理的一个完全独立和更为直接的证明,同时提供了积分与极限可交换次序的一个充要条件,然后利用控制收敛定理来证明Levi渐升列定理,最后还讨论了Levi定理、Fatou引理和Lebesgue控制收敛定理之间的等价关系。We first give a completely independent and more direct proof for Lebesgue Dom-inated Convergence Theorem and provide a sufficient and necessary condition for commutation of integral and pointwise convergence of a sequence of functions.Then we try to prove Levi Theorem by using Dominated Convergence Theorem.Finally we discuss equivalence relations of Levi Theorem,Fatou Lemma and the Dominated Convergence Theorem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.203.214