检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《沈阳工程学院学报(自然科学版)》2012年第3期283-288,共6页Journal of Shenyang Institute of Engineering:Natural Science
摘 要:Wronskian技术是求解非线性偏微分方程精确解的直接而有效的方法之一.Wronskian解可以通过直接代入孤子方程的双线性方程中得到验证.将Wronskian元素满足的条件方程推广到任意矩阵方程,利用Wronskian技术,构造孤子方程的广义双Wronskian解.利用广义双Wronskian解可以得到孤子方程许多类型的精确解,如孤子解、有理解、周期解、Matveev解、complexiton解以及混合解.具体地研究了等谱Levi方程,得到了一些新的Wronskian恒等式,从而得到了Levi方程广义双Wronskian形式的精确解,并利用Wronskian技术对解进行了证明.Wronskian technique is one of efficient direct approaches to deriving exact solutions to nonlinear evolution equations.It provides direct verifications of solutions to bilinear equations of soliton equations.In this paper,we extend the equations satisfied by Wronskian entries to the arbitrary matrix equations and work out the general double Wronskian solutions of the soliton equations through the Wronskian technique.Furthermore,we can obtain more types exact solutions such as soliton solutions,rational solutions,periodic solutions,Matveev solutions,complexiton solutions and interaction solutions from the general double Wronskian solutions.Applications are made for the isospectral Levi equations and some determinantal identities are introduced.We present the exact solutions in general double Wronskian forms of the Levi equations and the solutions are verified by means of the Wronskian technique.
关 键 词:孤子方程 精确解 Levi方程 Hirota形式 Wronskian技术
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117