检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:华吾森
机构地区:[1]上海市第五十四中学
出 处:《数学教学》1993年第6期11-13,共3页
摘 要:本刊93年第2期《一个有用的截距不等式》一文,用一个不等式解决了一类涉及圆锥曲线上两点成轴对称的高考题,确实使人耳目一新。本文试图从此两点及它的对称轴所在的直线方程出发,来解决此类问题,同样显得简捷明快。设椭圆C:x^2/a^2+y^2/b^2=1上存在不同两点A、B,若AB中点为M(m,n),则C关于M对称的曲线C′的方程为:(x-2m)~2/a^2+(y-2n)~2/b^2=1。显然,AB是C与C′的公共弦,C-C′得AB所在直线方程为: b^2mx+a^2ny-b^2m^2-a^2n^2=0 (Ⅰ)而线段AB的垂直平分线,即A、B两点的对称轴方程:
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15