检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国惯性技术学报》2014年第3期357-361,367,共6页Journal of Chinese Inertial Technology
基 金:国家自然科学基金(61174193);航天科技创新基金(CASC201102)
摘 要:为了提高组合导航系统的滤波精度,提出一种带噪声统计估计器的自适应UKF滤波算法。该算法根据协方差匹配原理,利用UKF滤波算法的残差序列与新息序列,在线估计、调整系统过程噪声和量测噪声的统计特性,提高UKF的自适应能力,克服了标准UKF在系统噪声统计未知或不准确情况下滤波精度下降甚至发散的问题。将提出的算法应用于SINS/BDS组合导航系统进行仿真验证,并与标准UKF和抗差UKF进行比较,结果表明,提出的自适应UKF得到的水平位置误差和天向误差分别在[?6.2 m,?6.4 m]与[?9.8 m,?8.6 m]以内,滤波性能明显优于标准UKF与抗差UKF,提高了组合导航系统的解算精度。This paper presents a novel adaptive UKF with noise statistic estimator for the purpose of improving the filtering accuracy of integrated navigation systems. The covariance matching technique is employed in the proposed algorithm, and the innovation and residual sequences are used to estimate and adjust the covariance matrices of the process and measurement noises online. The proposed algorithm enhances the adaptive capability of the UKF and overcomes the limitation of the standard UKF, otherwise the filtering solution will be deteriorated or even divergent as the system noise statistics are unknown or inaccurate. The proposed algorithm is applied to the SINS/BDS integrated system for simulation in comparison with the standard UKF and robust UKF. The simulation results demonstrate that the horizontal position error and vertical error obtained by the proposed adaptive UKF are within [-6.2 m, +6.4 m] and [-9.8 m, +8.6 m], respectively. The performance of the proposed algorithm is significantly superior to that of the standard UKF and robust UKF, leading to improved calculation precision of the integrated navigation system.
关 键 词:SINS/BDS组合导航 KALMAN滤波 自适应UKF 协方差匹配
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28