检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑德印[1]
机构地区:[1]大连理工大学应用数学系,辽宁大连116024
出 处:《大连理工大学学报》2004年第4期606-609,共4页Journal of Dalian University of Technology
摘 要:使用包含两个参数的一般阶乘,第一类和第二类Cauchy数被统一为广义Cauchy数.对该数的指数型生成函数,得到了它的封闭形式.利用广义Cauchy数的定义和它的生成函数导出该数的两个递推关系.广义Cauchy数和广义Stirling数之间的一个变换公式显示它们之间的密切联系.运用积分的计算技巧,证明了广义Cauchy数卷积和广义Stirling数之间的一个关系.最后,用Bell多项式和第二类Bernoulli数分别给出了广义Cauchy数的两种不同表示.Cauchy numbers of the first and the second kind can be unified into the generalized Cauchy numbers by starting with transformations between generalized factorials involving two arbitrary parameters. A closed form for the exponential generating function of the generalized Cauchy numbers is obtained. Two recurrence relations for generalized Cauchy numbers are also deduced by their definition and generating function, respectively. A transform formula between the generalized Cauchy numbers and the generalized Stirling numbers indicates their close relation. The convolution relation between the generalized Cauchy numbers and the generalized Stirling numbers is shown by using intergral skills. Finally, the generalized Cauchy numbers are expressed by the Bell polynomials and the second kind Bernoulli numbers, respectively.
关 键 词:广义Cauchy数 生成函数 广义STIRLING数 BELL多项式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63