检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学控制科学与工程系自动化研究所,湖北武汉430074
出 处:《系统工程与电子技术》2004年第6期777-778,810,共3页Systems Engineering and Electronics
基 金:国家自然科学基金(60274020;69974017);河北省自然科学基金(602621);广西省自然科学基金(0135065)资助课题
摘 要:提出了一种基于对角回归神经网络的PID控制器结构,给出了PID参数在线自整定的学习控制算法。为检验控制效果同时还使用了静态BP网络来整定PID参数,并在Matlab环境下,分别建立了基于对角回归神经网络和BP网络的液位实时控制系统。实际的控制效果说明,基于动态网络的PID控制器工作稳定,具有较好的鲁棒性。A new type of adaptive PID controller using diagonal recurrent neural network (DRNN)is presented. An on-line learning algorithm based on PID parameter self-tuning method is given. In order to verify the performance of the proposed approach, a control method that PID parameters are automatically adjusted by back-propagation (BP) algorithm is also introduced. Two real-time level control systems are devised on the basis of DRNN and BP networks using Matlab. The experimental results indicate that the PID controller based on dynamic neural network possesses satisfactory stability and robustness.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249