检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学计算机软件新技术国家重点实验室,江苏南京210093 [2]河海大学计算机及信息工程学院,江苏南京210098
出 处:《小型微型计算机系统》2004年第8期1506-1509,共4页Journal of Chinese Computer Systems
基 金:南京大学计算机软件新技术国家重点实验室开放基金;河海大学科技创新基金资助
摘 要:提出了基于神经网络和隐马尔可夫模型组合的彩色人脸图像检测方法 .根据归一化后的彩色图像的色度彩色分量直方图将图像粗分割成若干幅二值图像 ;在亮度图像上 ,以上述二值图像为掩模进行多分辨率的旋转不变性人脸检测 .在人脸检测时 ,本文分两步 :第一步先用神经网络来确定人脸的旋转角度 ,然后对旋正后的图像运用识别人脸奇异值特征的隐马尔可夫模型进行验证 .实验结果表明 。Presented a novel algorithm for rotation invariant face detection in color images, which combines both the capability of Neural networks and hidden Markov models (HMMs). Firstly, the color image is coarsely segmented into several binary images, which is accomplished based on the analysis of the histogram of the H component of the HSI color model. Secondly, multi resolution rotation invariant face detection is conducted in the luminance component image, while the previously segmented binary images are employed as masks. And lastly, both Neural networks and HMMs are utilized sequentially to decide whether a sub image is a face, i.e., the Neural networks tells about the rotation angle while the HMMs verify the de rotated upright face. Both the chromatic and gray information of a face are fully explored in our system. The performance of the system has been tested over 200 test images of varying complexity, including scanned photos, Internet images, and cluttered scenes captured in movies, with promising results, which have proved that the proposed algorithm is effective.
关 键 词:人脸检测 神经网络 隐马尔可夫模型 多分类器组合
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.72.117