CVaR在信用风险优化中应用及基于遗传算法的解  

The Application of Conditional Value-at-Risk Model in the Optimization of Credit Risk of Portfolio and the Solution Based on Genetic Algorithm

在线阅读下载全文

作  者:詹原瑞[1] 张建龙[1] 

机构地区:[1]天津大学管理学院,天津300072

出  处:《石家庄铁道学院学报》2004年第3期98-101,共4页Journal of Shijiazhuang Railway Institute

摘  要:条件受险价值是一种能够反映损失分布尾部信息,从而有利于防范小概率极端金融风险的风险度量和优化工具。Fredrik给出了能同时优化组合条件受险价值和受险价值的线性规划模型,该模型存在维数障碍。将其重新变回为一个非线性规划模型,并利用带约束的遗传算法求其近似最优解。通过举例对比原组合与优化后组合的标准差、受险价值、条件受险价值,得出结论:该模型能够在很少损失期望收益的情况下,同时减少标准差、受险价值、条件受险价值等重要风险衡量指标。CVaR is a new tool for credit risk measurement and optimization, which provides the tail information of loss and is favorable to keeping away the extreme finance risk with very little probability. Fredrik gives a CVaR model which can simultaneously optimize CVaR and VaR of portfolio. But this model has the drawback of dimension obstacle.This paper reverts it to a non-linear program model again and solves it by means of Genetic Algorithm with constraints.Compared with the original portfolios, the optimized portfolios' standard deviation, VaR and CVaR are obviously decreased with nearly the same expected yield rate.

关 键 词:条件受险价值 受险价值 信用计量方法 遗传算法 

分 类 号:F830[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象