一个算术函数的误差项估计  

Estimate on an error term of an arithmetic function

在线阅读下载全文

作  者:朱婉珍[1] 

机构地区:[1]浙江科技学院理学系,浙江杭州310023

出  处:《浙江师范大学学报(自然科学版)》2004年第3期225-229,共5页Journal of Zhejiang Normal University:Natural Sciences

摘  要:设Ψ(n)是Dedekind函数,∑n≤xnΨ(n)=αx+E(x),其中α是常数,E(x)是误差项.主要目的是利用经典的复积分理论及解析方法研究了E(x)的平方积分均值,得到了一个较为精确的估计式.Let Ψ(n) be the Dedekind totient function.It is known that∑n≤xnΨ(n)=αx+E(x),where α is a constant and E(x) is the error term.The main purpose of this paper is to study the square integral mean value of E(x) by means of classical complex integral theory and analytic method,and give a more precise asymptotic formula.

关 键 词:误差项 算术函数 估计式 复积分理论 均值 平方 常数 经典 目的 解析方法 

分 类 号:O156.4[理学—数学] G633[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象