检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学电信学院综合自动化研究所,陕西西安710049
出 处:《系统仿真学报》2004年第11期2591-2593,2621,共4页Journal of System Simulation
基 金:国家重点基础研究发展规划(973)项目(2001CB309403)
摘 要:在机动目标跟踪中,为了保证Kalman滤波器的数值稳定性和最优性,未知的时变系统噪声水平需要在线估计,但已有方法主要针对平稳或统计特性缓变的噪声过程。在Sage-Husa系统噪声水平自适应估计算法的基础上,通过引入基于新息的滤波器发散检测判据和利用强跟踪滤波器的思想,提出了一种系统噪声水平估计值的时变调节因子阵来抑制因系统噪声水平突变而引起的滤波器可能出现的发散问题。Monte-Carlo仿真结果表明,该算法不仅数值稳定性好,同时目标的跟踪精度也得到明显改善。In maneuvering target tracking, to ensure the numerical stability and optimality of Kalman filter, the unknown time-varying system noise variance needs to be estimated adaptively, but the existing methods are mostly limited to systems with stationary or slowly-varying noises. Based on the Sage-Husa adaptive estimator of system noise variance, by introducing the innovation-based detection criterion for filter divergence and using the idea of strong tracking filter, a time-varying scaling factor matrix multiplied by the system noise variance estimate is proposed in this paper, which can restrain the likely divergence of the tracking filter due to the sudden jumps of the system noise variance. Monte-Carlo simulation results show that the new proposed algorithm not only has better numerical stability, but also can improve the tracking precision greatly.
关 键 词:机动目标跟踪 自适应滤波 交互式多模型 强跟踪滤波器
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38