检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《力学与实践》2004年第5期46-48,共3页Mechanics in Engineering
基 金:国家自然科学基金项目(10172003);博士点专项基金(2000000112)资助
摘 要:通过引入Airy应力函数,平面问题可以归结为在给定的边界条件下求解一个双调和方程.因此对双调和函数性质的研究将有利于平面问题的求解.首先给出一个有关双调和函数的引理,并分别从复变和微分两种角度提供该引理的证明.借助这个引理,提出了一种构造极坐标中Airy应力函数的观察法.最后,举例说明了该观察法在几个经典平面问题中的应用.这些例子说明,利用本文的观察法可以将某些平面问题应力函数构造的过程简单化.With Airy stress function, a plane elasticity problem can be simplified to solve a biharmonic function equation. In this paper, we introduce a lemma concerning the biharmonic function. In order to prove the lemma, we present two different methods from two different angles in the first section. On the basis of the lemma, a direct method for constructing Airy stress functions in polar coordinates is derived. Finally, some examples are provided to illustrate how the direct method works in some classic plane cases and what we can benefit from this direct method for the stress function construction. These application examples indicate that the direct method derived in this paper simplifies the process of constructing the Airy function in specific plane problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222