检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵立业[1] 周百令[1] 赵池航[1] 万振刚[1] 马云峰[1]
出 处:《东南大学学报(自然科学版)》2004年第6期780-783,共4页Journal of Southeast University:Natural Science Edition
摘 要:在分析基于矩阵奇异值分解理论的滤波算法基础上 ,将其应用到高精度海洋重力仪系统信号处理中 .在信号处理过程中 ,首先采用延迟法理论重构系统的相空间 ,得到吸引子轨迹矩阵 ,然后对轨迹矩阵进行奇异值分解 ,用部分奇异值重构有用信号的最佳逼近矩阵 ,并与自适应卡尔曼滤波进行了对比分析 ,以实际信号与处理后信号的信噪比作为衡量 2种信号处理方法好坏的依据 .理论分析和仿真实验表明 ,奇异值分解滤波方法和自适应卡尔曼滤波都能在一定程度上消除干扰噪声对重力异常信号的影响 ,但在相同背景条件下 ,奇异值分解滤波的性能优于自适应卡尔曼滤波 .Compared with adaptive Kalman filtering, the theory of filtering based on matrix singular value decomposition (SVD) is analyzed and applied to process the signal measured by precise gravimeter. Preliminary work is to form a trajectory matrix with time delay embedding theory during the signal processing. SVD is then used to distinguish the signal from the noise. The signal to noise ratio (SNR) is used as the index for evaluating the performance of the signal processing methods. Theoretical analysis and simulation experiments indicate that both SVD filtering and adaptive Kalman filtering are effective in alleviating the effects of different noise, but the performance of SVD filtering is better than that of adaptive Kalman filtering.
分 类 号:TH761.5[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186