一个新的方程族及其Liouville可积性  被引量:1

A Hierarchy of Evolution Equations and its Integrability of Liouville

在线阅读下载全文

作  者:董焕河[1] 赵义军[1] 孔令臣[1] 张宁[1] 

机构地区:[1]山东科技大学信息学院,山东青岛266510

出  处:《烟台师范学院学报(自然科学版)》2004年第4期246-249,共4页Yantai Teachers University journal(Natural Science Edition)

基  金:山东省自然科学基金(Y2002G09)

摘  要:从等谱问题出发,基于Loop代数 A1的基的个数与换位运算,利用屠规彰格式得到了一族方程及其Hamilton结构,证明了该方程是Liouville可积的,作为该系统的约化,得到了著名的Schr¨odinger方程,广义Mkdv方程,热传导方程和耦合的Burgers方程.Starting from a isospectral problem and basing on the basis number and commutative relations of Loop algebra _1, the authors propose a type of Liouville integrable system and its bi-Hamiltonian structure by using Tu Guizhang's model.The reductions to the integrable system give rise to the well-known Schrdinger equation,generalized Mkdv equation,heated conduction equation and Burgers equation.

关 键 词:等谱问题 LOOP代数 LIOUVILLE可积 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象