检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖广兰[1] 史铁林[1] 来五星[1] 姜南[1] 刘世元[1]
机构地区:[1]华中科技大学机械科学与工程学院机械电子信息工程系,武汉430074
出 处:《机械强度》2005年第1期1-5,共5页Journal of Mechanical Strength
基 金:国家重大基础研究项目基金 (2 0 0 3CB71 62 0 7);国家自然科学基金资助 (50 4 0 50 33和 50 2 0 50 0 9)项目~~
摘 要:讨论核函数PCA(principalanalysiscomponent,主元分析 )的算法原理 ,提出基于核函数PCA的齿轮箱状态监测方法。该方法借助于核函数计算得到原始特征的非线性主元 ,并根据非线性主元构建特征子空间 ,实现对齿轮箱运行状态的分类识别 ,并监测其状态变化。实例研究表明 ,核函数PCA分类效果比PCA好 ,能有效识别出齿轮箱的不同状态 。The kernel principal component analysis (KPCA) is discussed, where the inner integral operator kernel functions is used to realize the nonlinear map from the raw feature space to high dimensional feature space, and then standard principal analysis component (PCA) is performed in the high dimensional space. An approach for gearbox condition monitoring based on KPCA is presented, in which the nonlinear principal components of original feature space are calculated by means of kernel function, in succession feature subspace are constructed based upon these selected nonlinear principal components, and gearbox condition classification and recognition and condition monitoring are realized. The experimental data sets of gearbox working under normal, tooth cracked and tooth broken conditions are analyzed, and the results indicate that the KPCA can classify and recognize different gearbox conditions more efficiently than the PCA method, and then monitor the developments and variation of gearbox conditions in time.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

