电机故障诊断支持向量机  被引量:17

Support Vector Machine for Fault Diagnosis of the Rotor Broken Bars of IM

在线阅读下载全文

作  者:曹志彤[1] 陈宏平[1] 何国光[1] 

机构地区:[1]浙江大学,杭州310028

出  处:《仪器仪表学报》2004年第6期738-741,共4页Chinese Journal of Scientific Instrument

摘  要:基于数据的机器学习是现代智能技术中的重要方面。统计学习理论 (Statistical learning theory SL T)是研究小样本情况下机器学习规律的新理论。支持向量机 (Supportvector machine SVM)是在这一理论体系基础上发展起来的一种通用学习方法。SL T和 SVM正成为继神经网络研究之后新的研究热点。通过对鼠笼式异步电动机转子断条故障进行实验模拟 ,对实验获取的采样电流信号经 FFT分析 ,构造以低频到高频的频谱特性为分量的学习样本向量 ,通过支持向量机 SVM对故障电流样本的训练 ,使 SVM具有分类功能。最后 ,采用 SVM对电动机各种转子断条故障进行诊断分类 ,取得较满意的结果 ,说明支持向量机 SVM是进行故障诊断的一种新方法。The data-based machine learning is an important aspect of modern intelligent technology, while statistical learning theory(SLT) is a new tool that studies the machine learning methods in the case of a small number of samples. As a common learning method, support vector machine(SVM) is derived from SLT. Some analogical experiments of the rotor broken bar faults of induction motors were done. The signals of the sample currents are analyzed with FFT, and the spectral characteristics from low frequency to high frequency are constructed and used as learning sample vectors for SVM. Accordingly a SVM is trained with learning sample vectors, so that each kind of the rotor broken bars faults of induction motors had classified for SVM. Finally the retest proves that SVM really has preferable ability of classification, and the results suggested that SVM could yet be regarded as a new method in the fault diagnosis.

关 键 词:SVM 支持向量机 机器学习 统计学习理论 SLT 通用 分类功能 诊断分类 术中 电机故障 

分 类 号:TH215[机械工程—机械制造及自动化] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象