检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大庆石油学院计算机科学与工程学院,黑龙江大庆163318
出 处:《计算机工程与设计》2005年第2期302-304,共3页Computer Engineering and Design
基 金:国家自然科学基金项目(60373102)。
摘 要:支持向量机是20世纪90年代中期发展起来的一种机器学习技术,与传统人工神经网络不同之处在于前者基于结构风险最小化原理,后者基于经验风险最小化原理。支持向量机不仅结构简单,而且技术性能尤其是泛化能力与BP神经网络相比有明显提高。讨论了支持向量机的分类原理,并用多项式函数、径向基函数和感知机函数等3种核函数作为内积回旋,分别以平面点集分类、手写体汉字识别及双螺旋线识别为例,在不同的结构参数下进行了仿真实验,并对3种核函数的分类特性进行了对比分析,给出了在不同模式识别问题中3种核函数的选择条件。Support vector machine (SVM) is a method of machine learning developed in the middle period in 1990s. The difference between SVM and neural network is that the former is based on structure risk minimization principle in pattern recognition, and the latter is based on experience risk minimization principle in pattern recognition. SVM has not only simpler structure, but also better performance, especially better generalization ability. The classification principle of SVM is discussed, and three kinds of kernel function are applied to SVM, which are multinomial function, radial basis function, perceptron function. Finally comparison of three kernel function characteristic is presented by three recognition examples: classification of point set in plane, recognition of similar script Chinese characters, and recognition of double screw curve. The rules of kernel function selection in different recognition matter are presented.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7