检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学电气工程系,上海市徐汇区200030
出 处:《中国电机工程学报》2005年第8期13-16,共4页Proceedings of the CSEE
基 金:国家自然科学基金项目(50307007)。~~
摘 要:该文提出表示微分-代数模型中的奇异性、鞍结点和霍普夫分岔的代数方程以便应用延拓法来求解获得二维参数的分岔边界。该方程保留了电力系统稳定微分-代数模型的形式不变,也未涉及到矩阵求逆或行列式值的计算,同时该方程也具有直接法计算分岔时速度快的优点。其缺点是方程的维数增加了。应用所提方法计算了一简单电压稳定和一多机电力系统稳定模型中的二维参数局部分岔边界,并和实域仿真进行比较,结果表明该方法是准确可行的。Based on two numerical methods used in bifurcation analysis, this paper proposed a set of algebraic equations that could be solved by continuation method to calculate two-dimensional singularity induced, saddle-node and Hopf bifurcations boundary in differential- algebraic equations (DAE). These algebraic equations keep the form of power system stability DAE model unchanged, also they need neither to inverse matrix nor compute the determinant, in the meantime they have the same advantage of rapid convergent speed as the direct method. The drawback is that their dimension is increased.. The method was applied in a simple voltage stability power system and a multi-machine power system to calculate their two-dimensional parameter local bifurcation boundary The results are checked with those obtained by time domain simulation method to illustrate its capability and accuracy.
关 键 词:局部分岔 稳定模型 延拓法 计算 边界 二维 电力系统稳定 多机电力系统 代数模型 霍普夫分岔 代数方程 矩阵求逆 电压稳定 奇异性 鞍结点 行列式 直接法 微分 应用
分 类 号:TM711[电气工程—电力系统及自动化] O441.1[理学—电磁学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117