检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Southeast University, Nanjing 210096, PRC.
出 处:《Numerical Mathematics A Journal of Chinese Universities(English Series)》2005年第2期180-192,共13页
基 金:This work is supported by NSFC(No.10371018).
摘 要:Consider a 1-D backward heat conduction problem with Robin boundary condition. We recover u(x, 0) and u(x, to) for to ∈ (0, T) from the measured data u(x, T)respectively. The first problem is solved by the Morozov discrepancy principle for which a 3-order iteration procedure is applied to determine the regularizing parameter. For the second one, we combine the conditional stability with the Tikhonov regularization together to construct the regularizing solution for which the convergence rate is also established. Numerical results are given to show the validity of our inversionConsider a 1-D backward heat conduction problem with Robin boundary condition. We recover u(x, 0) and u(x, t0) for to ∈(0, T) from the measured data u(x, T) respectively. The first problem is solved by the Morozov discrepancy principle for which a 3-order iteration procedure is applied to determine the regularizing parameter. For the second one, we combine the conditional stability with the Tikhonov regularization together to construct the regularizing solution for which the convergence rate is also established. Numerical results are given to show the validity of our inversion method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195