一类双曲型积分微分问题有限元逼近的超收敛估计(英文)  被引量:3

Superconvergence of a Finite Element Method for a Kind of Hyperbolic Integro-differential Problems

在线阅读下载全文

作  者:公敬[1] 杨晓忠[1] 李潜[2] 

机构地区:[1]华北电力大学(北京)科学与工程计算研究所,北京102206 [2]山东师范大学数学系,济南250014

出  处:《工程数学学报》2005年第3期413-419,共7页Chinese Journal of Engineering Mathematics

基  金:Foundations for University Key Teacher by the Ministry of Educationthe Science Foundations for Young Teachers of North China Electric Power University.

摘  要:本文研究双曲型积分微分方程的半离散有限元逼近格式的超收敛估计。基于一种新的初值近似,得到了有限元解与精确解的Ritz-Volterra投影的Ws,p(Ω)模的如下超收敛估计:k>1,s=0,2≤p≤∞时,超收敛1阶;k>1,s=1,2≤p<∞时,超收敛2阶;k>1,s=1,p=∞时,几乎超收敛2阶;k=1,s:1,2≤p≤∞时,超收敛1阶。In this paper, we study the superconvergence of a semi-discrete finite element scheme for hyperbolic integro-differential problems using any degree of elements. The scheme is based on introducing a new way of approximating initial conditions. We obtain several superconvergence results for the error between the approximate solution and the Ritz Volterra projection of the exact solution. For k > 1, we obtain first order gain in Lp (2 ≤ p ≤ ∞) norm, second order in W1,p(2 ≤ p < ∞) norm and almost second order in W1,∞ norm. For k = 1, we obtain first order gain in W1,p (2 ≤ p ≤ ∞) norm.

关 键 词:超收敛 双曲型积分微分方程 有限元 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象