基于广义逆矩阵的有理Bézier曲线降多阶逼近  被引量:2

Approximation of multi-degree reduction of rational Bézier curves by the general inverse matrix

在线阅读下载全文

作  者:郭清伟[1] 宋颖祥[1] 

机构地区:[1]合肥工业大学理学院,安徽合肥230009

出  处:《合肥工业大学学报(自然科学版)》2005年第7期824-828,共5页Journal of Hefei University of Technology:Natural Science

摘  要:文章利用有理Bézier曲线的齐次坐标表示,参考基于广义逆矩阵的多项式的降多阶逼近方法,给出了基于广义逆矩阵的有理Bézier曲线的降多阶逼近方法。在降阶过程中,分别考虑了不保端点插值和具有端点高阶插值条件的情形,并分别得到了降多阶后的有理Bézier曲线的控制顶点齐次坐标的计算公式。最后,给出数值实例,以显示所给方法的有效性。Rational Bzier curves are the generation of polynomial Bzier curves. In this paper, an approach for multi-degree reduction of rational Bzier curves is presented, which is based on the coordinate expression of rational Bzier curves and the method of multi-degree reduction of polynomial Bzier curves by the general inverse matrix. The explicit formula of the homogeneous coordinates of the control points of the reduced rational Bzier curves is obtained. In the process of degree reduction, the case with higher order interpolation conditions of endpoints is considered. Finally, some numerical examples are presented to illustrate the effects of this method.

关 键 词:有理BÉZIER曲线 升降 降多阶 端点插值 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象