检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《合肥工业大学学报(自然科学版)》2005年第7期824-828,共5页Journal of Hefei University of Technology:Natural Science
摘 要:文章利用有理Bézier曲线的齐次坐标表示,参考基于广义逆矩阵的多项式的降多阶逼近方法,给出了基于广义逆矩阵的有理Bézier曲线的降多阶逼近方法。在降阶过程中,分别考虑了不保端点插值和具有端点高阶插值条件的情形,并分别得到了降多阶后的有理Bézier曲线的控制顶点齐次坐标的计算公式。最后,给出数值实例,以显示所给方法的有效性。Rational Bzier curves are the generation of polynomial Bzier curves. In this paper, an approach for multi-degree reduction of rational Bzier curves is presented, which is based on the coordinate expression of rational Bzier curves and the method of multi-degree reduction of polynomial Bzier curves by the general inverse matrix. The explicit formula of the homogeneous coordinates of the control points of the reduced rational Bzier curves is obtained. In the process of degree reduction, the case with higher order interpolation conditions of endpoints is considered. Finally, some numerical examples are presented to illustrate the effects of this method.
关 键 词:有理BÉZIER曲线 升降 降多阶 端点插值
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117