检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈伏兵[1] 陈秀宏[1] 高秀梅[1] 杨静宇[1]
机构地区:[1]南京理工大学计算机科学系
出 处:《计算机应用》2005年第8期1767-1770,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60472060)
摘 要:提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方法相比,使用低维的鉴别特征矩阵,而达到较高(至少是不低)的正确识别率。此外,2DPCA是分块2DPCA的特例。在ORL和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上优于2DPCA方法。A human face recognition technique based on modular 2DPCA was presented. First, the original images were divided into modular images in proposed approach. Then the 2DPCA method could be directly used to the sub-images obtained from the previous step. There are three advantages for this way: 1)dimension reduction of discriminant features can be done conveniently; 2)singular value decomposition of matrix is fully avoided in the process of feature extraction, so the features for recognition can be gained easily; 3)as opposed to 2DPCA, the feature matrix of lower dimension can be employed, and higher (not less at least) correct recognition rate can be reached. Moreover, 2DPCA is the special case of modular 2DPCA. To test modular 2DPCA and evaluate its performance, a series of experiments were performed on three human face image databases: ORL and NJUST603 human face databases. The experimental results indicated that the performance of modular 2DPCA is superior to that of 2DPCA.
关 键 词:线性鉴别分析 特征抽取 分块二维主成分分析 特征矩阵 人脸识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248