检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学
出 处:《高校应用数学学报(A辑)》1995年第4期361-368,共8页Applied Mathematics A Journal of Chinese Universities(Ser.A)
基 金:国家自然科学基金
摘 要:本文研究具有星形结点的三次系统x=x+P2(x,y)+P3(x,y),y=y+Q2(x,y)+Q3(x,y).引入函数g4(θ)(见(1.6))和A(θ)(见(4.4)),得到下述结论:若g4(θ)有零点,则不存在包围原点在其内部的闭轨,特别地,若g4(θ)≡0,则全平面不存在闭轨;若g4(θ)定号,A(θ)常号,则至多存在一个闭轨,若存在,它必包含所有奇点在其内部,且为星形的;若g4(θ)定号而A(θ)变号,则给出了极限环不唯一的例子。In this paper, we consider the limit cycles of a planar cubic system with a star-shaped node x=x+P2(x,y)+P3(x,y), y=y+Q2(x,y)+Q3(x,y).By introducing the functions g4(θ) (see (1. 6)) and A(θ) (see (4. 4)), we obtain the following conclusion: If g4(θ) has a zero point, then the system has no closed orbit surrounding O. Particularly, if g4(θ)≡0, then the system has no closed orbit in whole plane. If g4(θ) does not vanish and A(θ) does not change sign, then the system has at most one limit cycle, and the limit cycle must surround all singular points and must be star-shaped when it exists. We give an example that the system has two limit cycles when g4(θ) does not vanish and A(θ) changes sign.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30