检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]唐山工程技术学院,063009 [2]南京航空航天大学理学院,210016
出 处:《高等学校计算数学学报》1995年第4期323-331,共9页Numerical Mathematics A Journal of Chinese Universities
基 金:国家自然科学基金;江苏省自然科学基金
摘 要:1 引 言 对于求解无约束最优化问题 min f(x),f:R^n→R,f∈C^2。Davidon提出了一类非二次模型方法,即锥函数近似模型 f(x)≈c(x)=f(x_k)+(f(x_k)~T(x-x_k))/((1-h_k^T(x-x_k))+1/2((x-x_k)~TA_k(x-x_k))/([1-h_k^T(x-x_k)]~2) (1.1)Davidon (1980) proposed a class of collinear scaling algorithms with conic function for unconstrained minimization. Some authors have presented that a certain family of algorithms contained in this class may be considered as an extension of the family of quasi-Newton methods with Broyden family of approximants of the objective function Hessian. In this paper, without the collinear scaling transformation, we directly derive a class of conic model algorithms by using the interpolating conditions (i. e. , the function values and gradients at the iterative points xk-1 and xk.) The new methods may be considered as an extension of the quasi-Newton method with quadratic model, but they are different from Sorensen's or Ariyawansa' s methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28