检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈子栋[1]
出 处:《原子与分子物理学报》2005年第3期483-487,共5页Journal of Atomic and Molecular Physics
摘 要:本文求解了在球坐标下Hartmann势的Schrdinger方程,得到了能量方程和归一化的波函数。用Laplace变换使径向的二阶微分方程退化为一阶微分方程,直接积分后用级数展开,应用Laplace逆变换得出本征函数。讨论了径向本征函数的像函数的递推关系,从而得出径向波函数的递推关系。In this paper, We solved the Schr(oe)dinger equation with Hartmann potential in spherical polar coordinates and gave the exact energy equation and the normalized wave function. The second-order radial differential equation is reduced to a first-order differential equation by means of the Laplace transform, and then, its solutions are obtained by integral directly. To get the required eigenfunction employed the expansions of series and inverse Laplace transform. The recursion relation of the mirror function of radial eigenfunctions is discussed, and the recursion relation of radial wave function is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170