关于代数体函数的Nevanlinna第二基本定理  被引量:2

ON THE NEVANLINNA SECOND FUNDAMENTAL THEOREM OF ALGEBROID FUNCTIONS

在线阅读下载全文

作  者:涂振汉[1] 

机构地区:[1]华中理工大学

出  处:《数学杂志》1995年第1期72-76,共5页Journal of Mathematics

摘  要:设为复平面上的整函数且没有公共零点,令k+1i是在复数域上的极大线性无关数。设w=w(z)由下列不可约方程A_n(z)w ̄n+A_(n-1)(Z)w ̄(n-1)+…+A_1(z)W+A_0(z)=0所定义。我们称w=w(z)为n值K型代数体函数(1≤k≤n)。Let k+1 be the maximal linear independent nuinber of on the complex number field,lf w(z)is defined by the irreducible equation A_nw ̄n+A_(n-1)(z)w ̄(n-1)+…+A_1(z)w+A_0(z)=0 where are entire functions on C and have no conmon zero, w(z)is called n一valued k type algebroid function(1≤k≤n)。In this paper、we have Theorem 1 Let w(z)be n一valued k type algebroid function and a_i (i=1,2,…,p)be p distinct complex numbers(finite or infinite),Then where in the multiplicity of every zero point of w(z)-a_i is counted up to k tires.Corollary 1 Let w(z)be n一valued k type algebroid function. Then we have the defect relaticnwhereAs an applicalion of Theorew1,We have unlqueness the theorem of algebroidfunctions. Theorem 2 Letw_1(z)、w_2(z) be n_1一valued k_1 type and n_2 val ued k_2typealgebroid funclion respectively. Set n=max{n_1,n_2}and k=min{k_1,k_2}.Let a_i∈CU{∞}(i=1,2,…,4n+2-k)be 4n+2-kdistinct complex numbers.If w_1(a_i)=w_2(a_i)(counted the multiplicity up to max{k_1,k_2}times)fori=1,2,…,4n+2一k,then w_1(z)≡w_2(z).

关 键 词:代数体函数 第二基本定理 NEVANLINNA 

分 类 号:O174.53[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象