关于迹非零对称矩阵本原指数集的另法刻画  

Another method to completely characterize exponent set for class of symmetric matrix with nonzero trace

在线阅读下载全文

作  者:李毓祁 李大超[2] 

机构地区:[1]海南省五指山市人民银行,海南五指山572200 [2]海南师范学院数学系,海南海口571158

出  处:《海南师范学院学报(自然科学版)》2005年第2期99-103,共5页Journal of Hainan Normal University:Natural Science

摘  要:运用不同于文[1]的证明方法,对迹非零对称矩阵的本原指数集作出了完全刻画.所得结论是:①把迹非零对称矩阵类SBn按照矩阵的迹划分为互不相交的两大子类:SBn=SBn(Ⅰ)∪SBn(Ⅱ),SBn(Ⅰ)∩SBn(Ⅱ)=Φ;②以无向图G的直径d(G)为参数,确定出子类SBn(Ⅰ)的本原指数集E1={1,2,…,n-1}和子类SBn(Ⅱ)的本原指数集E2={2,3,…,2n-2}\S,其中S是{n,n+1,…,2n-2}中的所有奇数之集;③进而刻画出迹非零对称矩阵类SBn的本原指数集En=E1∪E2={1,2,…,2n-2}\S.We applied the method different from document [ 1 ] to completely characterize the exponent set for the class of symmetric primitive maaix with nonzero trace. Our results were as follows: ( 1 )We divided the class of symmetric primitive matrix with its nonzero trace into two subclasses by the trace of matrix: SBn=SBn(Ⅰ)∪SBn(Ⅱ),SBn(Ⅰ)∩SBn(Ⅱ)=Ф( empty set ) ; (2) We took the diameter d(G) of the graph G as a parameter to determine the exponent set El of the subclass SBn ( Ⅰ ) and the exponent set E2 of the subclass SB. ( Ⅱ ), that is, E1 = { 1,2,…, n - 1 } and E2 = { 2,3,…,2 n - 2 } / S, S is the set of odd, and all the odd of s belongs to the set { n, n + 1, … ,2n - 2} ; (3)And then we determined the exponent set En of the class SBn, that is, En = E1 ∪ E2 = { 1,2,… ,2n - 3} / S.

关 键 词:矩阵的迹 本原矩阵 本原指数 局部本原指数 伴随有向图 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象