检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]深圳大学信息工程学院,广东深圳518060 [2]中国科学院光电技术研究所,四川成都610209
出 处:《光电工程》2005年第8期1-5,共5页Opto-Electronic Engineering
摘 要:提出一种新的以边界不变矩作为识别特征,运用BP网络识别扩展目标的方法。首次通过详细的理论证明和实验分析,揭示了离散边界不变矩不再具有严格的比例不变性,而位移和旋转不变性保持相对稳定,并对该不变矩作为识别特征的误差进行了深入分析,给出了正确计算边界不变矩的途径。在此基础上,以该边界不变矩作为识别特征,输入BP网络,采用合理的网络结构,实现对发生位移、旋转和尺度变化的扩展目标的识别。边界不变特征的引入,减少了数据运算量,实验结果表明,识别率达到95.9%。In view of recognition efficiency and movement complexity of extended targets, a new extended target recognition method with BP neural network is proposed, in which moment invariants based on target boundary are utilized as recognition features. The RST (Rotation, Scale and Translation) invariance of such features in digital condition is proved and analyzed for the first time. The analysis results say that their scaling invariance is lost, while translation and rotation invariance are almost maintained. And also the errors of these invariants during target recognition are analyzed and the right way to get these recognition features is given. Using these features as inputs, through BP neural network with reasonable structure, the extended target is recognized correctly. With this method, computation is reduced by introducing invariants based on boundary. Experimental results indicate the recognition ratio reaches 95.9%.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.53