基于SWA的核自联想记忆模型及其人脸识别应用  被引量:5

Small-World Architecture Based Kernel Auto-Associative Memory Model and Its Application to Face Recognition

在线阅读下载全文

作  者:陈蕾[1] 张道强[2] 周鹏[2] 陈松灿[2] 

机构地区:[1]南京邮电大学计算机科学与技术系,江苏南京210003 [2]南京航空航天大学计算机科学与工程系,江苏南京210016

出  处:《应用科学学报》2005年第5期497-501,共5页Journal of Applied Sciences

基  金:国家自然科学基金(60271017);江苏省自然科学基金(BK2002092)资助项目

摘  要:通过在传统的自联想记忆模型中引入机器学习中颇具影响力的核方法,提出了一类囊括现有自联想记忆模型的统一的核自联想记忆模型框架(KAM),并针对KAM所具有的复杂的全互连结构,借鉴最近由Watts和Strogatz提出的“小世界网络”理论,构建了一类结构相对简单、易于硬件实现的基于小世界体系(SWA)的核自联想记忆模型框架(SWA-KAM).在FERET人脸数据库上的随机加噪和部分遮挡的识别实验表明,该模型获得了比PCA算法以及最近提出的(PC)2A算法更高的识别率,表现出了较强的鲁棒性.By introducing the kernel method into conventional auto-associative memory model (AM), a unified framework of kernel auto-associative memory model (KAM) is established, which extends the existing AM. Taking into account the complex full connectivity of KAM, and based on the small-world network described by Watts and Strogatz, this paper proposes a framework of small-world architecture based kernel auto-associative memory model (SWA-KAM), making VLSI implementation of AM easier. Simulation results on FERET face image database show that, SWA-KAM is more robust and has higher recognition rate than both PCA and (pC)^2A algorithms in the presence of additive noise or partial occluding on face images.

关 键 词:小世界体系 联想记忆 神经网络 核方法 人脸识别 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象