检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学应用数学系
出 处:《计算数学》1996年第2期113-128,共16页Mathematica Numerica Sinica
基 金:国家自然科学基金
摘 要:基于子结构法构造用非协调元解椭圆型问题的预处理器(Ⅰ)顾金生,胡显承(清华大学应用数学系)THECONSTRUCTIONOFPRECONDITIONERSFORELLIPTICPROBLEMSDISCRETIZEDBYNONCONFORMINGFIN...Abstract We consider the problem of solving the algebraic system of equations which arise from the discretisation of symmetric elliptic problems via a class of nonconforming finite elements, which is only continuous at the nodes of the quasi-uniform mesh. The condition number of the algebraic system is proved to be O(h-2), where h is the mesh parameter. By substructuring (also known as nonoverlap domain decomposition), we proposed a series of preconditioners. The resulting preconditioned algorithms are well suited to emerging parallel computing architectures. A basic theory for the analysis of the condition number of the preconditioned system (which determines the iterative convergence rate of the algorithm) is presented. The condition number of our preconditioned system is,where H is the maximum diameter of subdomains.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.196.3