主左理想由若干个幂等元生成的环  被引量:2

Rings All of Whose Left ideals are Generated by Idempotents

在线阅读下载全文

作  者:吴贵花 章聚乐[1] 

机构地区:[1]安徽师范大学数学系

出  处:《Journal of Mathematical Research and Exposition》1996年第2期269-274,共6页数学研究与评论(英文版)

摘  要:环R称为左PI-环,是指R的每个主左理想由有限个幂等元生成.本文的主要目的是研究左PI-环的vonNeumann正则性,证明了如下主要结果:(1)环R是Artin半单的当且仅当R是正交有限的左PI-环;(2)环R是强正则的当且仅当R是左PI-环,且对于R的每个素理想P,R/P是除环;(3)环R是正则的且R的每个左本原商环是Artin的当且仅当R是左PI-环且R的每个左本原商环是Artin的;(4)环R是左自内射正则环且Soc(RR)≠0当且仅当R是左PI-环且它包含内射极大左理想;(5)环R是MELT正则环当且仅当R是MELT左PI-环.A ring R is called a left PI-ring if every principal left ideal in R is generated by a finite set of idempotents. The aim of this paper is to study von Neumann regularity of left PI-rinss.We prove the following results: (1) A ring R is artinian semisimple if and only if R is an orthogonally finite left PI-ring; (2) A ring R is strongly regular if and only if R is a left PI-ring and R /P is a division ring for any prime ideal P of R: (3) A ring R is regular and allleft primitive factor rings of R are artinian if and only if R is a left PI-ring and all left primitive factor rings are artinian; (d ) A ring R is a left self-injective regular ring and soc(RR ) ≠0 if and only if R is a left PI-ring containing an injective maximal left ideal; (5) A ring R is an MELT regular ring if and only if R is ail MELT left PI-ring. We also give some characterisations of normal rings.

关 键 词:正规环 阿丁半单环 主左理想 幂等元  结合环 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象