共形几何代数——几何代数的新理论和计算框架  被引量:36

Conformal Geometric Algebra—A New Framework for Computational Geometry

在线阅读下载全文

作  者:李洪波[1] 

机构地区:[1]中国科学院数学机械化重点实验室,北京100080

出  处:《计算机辅助设计与图形学学报》2005年第11期2383-2393,共11页Journal of Computer-Aided Design & Computer Graphics

基  金:国家自然科学基金(10471143);国家重点基础研究发展规划项目基金(2004CB318001)

摘  要:共形几何代数是一个新的几何表示和计算工具.作为几何的高级不变量和协变量系统的结合,它为经典几何提供了统一和简洁的齐性代数框架,以及高效的展开、消元和化简算法,从而可以进行极其复杂的符号几何计算,在几何建模与计算方面表现出很大的优势.主要讲述共形几何代数的产生背景和意义,共形几何代数的数学理论和它最有特色的几个部分,包括Grassmann结构、统一几何表示和旋量作用、基本不变量系统和高级不变量系统、新的计算思想、展开和化简技术等.Conformal Geometric Algebra (CGA) is a new tool for geometric representation and computation. As an integration of advanced geometric invariants and covariants systems, CGA provides a unified and compact homogeneous algebraic framework for classical geometries, together with a set of effective algorithms for expansion, elimination and simplification, which enables it to carry out extremely complicated symbolic geometric computations, and be used quite advantageously in geometric modeling and computing. This is the first of a series of papers dedicated to the introduction of CGA. The paper focuses on the background and importance of CGA, the mathematical theory and several most important features, including the Grassmann structure, the universal geometric representation and spin or action, the basic invariant system and advanced invariant system, the new idea in computing, the expansion and simplification techniques, etc.

关 键 词:共形几何代数 几何语言 几何建模 几何计算 零括号代数 

分 类 号:O151.24[理学—数学] TP301.6[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象