检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐西林
机构地区:[1]兰州大学数学系,兰州730000
出 处:《数学学报(中文版)》1996年第1期50-56,共7页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金;博士点基金资助课题.
摘 要:刻划半群上的同余及其扩张是半群的代数理论中的一个非常重要的课题.本文讨论了带上的同余的正规性和不变性以及在其Hall半群上的扩张,从同余扩张的角度刻划了带上的同余的性质,给出了扩张的极大、极小同余的描述.It is very importent to study congruences and congruence extensions on semigroups. Many authors, such as Petrich, Pastijn, Jones, Trotter and Stralka etc.,put their most interests into this field. Some kinds of congruences on semigroups had been investigated by means of congruence pairs, see, for example, [1],[5],[6] and [7]. In particular, the descriptions for the maximum idempotent-separated congruences and the minimum group congruences on many kinds of semigroups were given. On the other hand, the class of semigroups with the congruence extension property was involved and described, see [4], [9] and [10]. In this paper, we introduce normalities and invariances for congruences on bands, and discuss that congruences on bands extend to fully regular subsemigroups of Hall semigroups of bands.In addition, we characterize congruences on bands, such as completely invariant congruences and characteristic invariant congruences on bands according to congruence extensions on semigroups, and describe the maximum congruence extension and the minimum congruence extension for a given congruence on a band.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117