检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘勇洪[1] 牛铮[1] 徐永明[1] 李向军[1]
机构地区:[1]中国科学院遥感应用研究所遥感科学国家重点实验室,北京100101
出 处:《中国科学院研究生院学报》2005年第6期724-732,共9页Journal of the Graduate School of the Chinese Academy of Sciences
基 金:中国科学院知识创新工程重大项目(KZCX1-SW-01);国家高技术研究发展计划项目863计划(2003AA131170)资助
摘 要:应用MODIS 250m分辨率遥感影像对中国华北地区分别采用最大似然法、Parzen窗、CART决策树、BP神经网络、Fuzzy ARTMAP神经网络等5种分类方法进行区域尺度上土地覆盖制图的比较试验.结果表明:(1)Parzen窗法分类性能最优,CART和BP其次,Fuzzy ARTMAP表现较差.(2)CART决策树具有较好鲁棒性,但缺点是样本代价较大;BP神经网络分类器能达到较高精度,但缺点是需较高质量的样本、网络结构参数难以确定,造成其稳健性较差;FuzzyARTMAP则未能表现出理想结果.(3)训练样本数量差异造成:最大似然法的分类精度差异值低于5%;Parzen窗法和Fuzzy ARTMAP差异为5%~10%;CART和BP差异在10%以上.Five classification methods which are MLC (Maximum Likelihood Classifier), Parzen window, CART decision tree, BP neural network and Fuzzy ARTMAP neural network are selected to map the land cover of Huabei Area in China using MODIS 250m data. The results show that Parzen window performs best in the five classifiers. And CART and BP have satisfactory accuracy whereas Fuzzy ARTMAP has unexpected bad accuracy in comparison with MLC. CART decision tree has better flexibility and robustness. However, it pursues high accuracy at the cost of the sample size. BP neural network has high accuracy but requires high-quality samples and it is hard to define its net structure parameters. The results also show the classification accuracy difference caused by the size of training samples on MLC, Parzen window and Fuzzy ARTMAP, CART and BP are below 5 %, 5 %-10 % and above 10%, respectively.
关 键 词:MODIS 250m 土地覆盖分类 最大似然法 PARZEN窗 CART决策树 BP神经网络 FUZZY ARTMAP神经网络
分 类 号:TP753[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3