序半群的K-理论  

ALGEBRAIC K-THEORY METHOD ON PARTIALLY ORDERED SEMIGROUPS

在线阅读下载全文

作  者:石小平 [1] 佟文廷 [2] 

机构地区:[1]东南大学数学系,南京,210096 [2]南京大学数学系,南京,210093

出  处:《南京大学学报(数学半年刊)》2005年第2期299-307,共9页Journal of Nanjing University(Mathematical Biquarterly)

基  金:江苏省自然科学基金

摘  要:设S为幺半群,1为其单位元,B是非空集合.若有映射(S在B上的作用)S×B→B满足s(tb)=(st)b,1b=b,其中s,t∈S,b∈B,则称B为(左)S-系.宋光天利用有限生成投射S-系讨论了半群的Grothendieck群和Whitehead群.在文[6]中,作者给出了无零元序幺半群S上的投射序S-系的结构.本文首先利用不可分强凸子系给出了序S-系的分解定理,然后给出了投射序S-系的结构,最后讨论了序半群上的Grothendieck群.For a monoid S, a (left) S-act is a non-empty set B together with a mappingS × B → B sending (s, b) to sb such that s(tb) = (st)b and 1b = b for all s, t ∈ S andb ∈ B. Using the category of finitely generated projective S-acts, Song introducedthe Grothendieck groups and the Whitehead groups of semigroups. Partially orderedacts over a partially ordered monoid S, or S-posets, appear naturally in the studyof mappings between posets. Recently, projective S-posets without zero element areconsidered. In this paper, a unique decomposition theorem of S-posets is given in termsof strongly convex, indecomposable S-subposets, and a structure theorem for projectiveS-posets is given. In the last section, we discuss the Grothendieck groups of partiallyordered semigroups.

关 键 词:序S-系 GROTHENDIECK群 强凸S-子系 

分 类 号:O152.7[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象