检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学数学系,南京,210096 [2]南京大学数学系,南京,210093
出 处:《南京大学学报(数学半年刊)》2005年第2期299-307,共9页Journal of Nanjing University(Mathematical Biquarterly)
基 金:江苏省自然科学基金
摘 要:设S为幺半群,1为其单位元,B是非空集合.若有映射(S在B上的作用)S×B→B满足s(tb)=(st)b,1b=b,其中s,t∈S,b∈B,则称B为(左)S-系.宋光天利用有限生成投射S-系讨论了半群的Grothendieck群和Whitehead群.在文[6]中,作者给出了无零元序幺半群S上的投射序S-系的结构.本文首先利用不可分强凸子系给出了序S-系的分解定理,然后给出了投射序S-系的结构,最后讨论了序半群上的Grothendieck群.For a monoid S, a (left) S-act is a non-empty set B together with a mappingS × B → B sending (s, b) to sb such that s(tb) = (st)b and 1b = b for all s, t ∈ S andb ∈ B. Using the category of finitely generated projective S-acts, Song introducedthe Grothendieck groups and the Whitehead groups of semigroups. Partially orderedacts over a partially ordered monoid S, or S-posets, appear naturally in the studyof mappings between posets. Recently, projective S-posets without zero element areconsidered. In this paper, a unique decomposition theorem of S-posets is given in termsof strongly convex, indecomposable S-subposets, and a structure theorem for projectiveS-posets is given. In the last section, we discuss the Grothendieck groups of partiallyordered semigroups.
关 键 词:序S-系 GROTHENDIECK群 强凸S-子系
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46