同F函数有关的丢番图逼近  

在线阅读下载全文

作  者:徐广善[1] 

机构地区:[1]中国科学院数学研究所,北京100080

出  处:《科学通报》1996年第14期1261-1264,共4页Chinese Science Bulletin

基  金:国家自然科学基金

摘  要:在文献[1~3]中研究了同Siegel E,G函数有关的代数方程根的丢番图逼近.本文给出同F函数有关的一个丢番图逼近定理.令K是次数为d的代数数域,O_k为K上整数环.定义F函数:幂级数f(z)=sum from n-0 to ∞ (a_n n!)z^n满足条件:(1)对所有n,α_n∈K和(?)≤c_1~n(?)表示α和所有共轭的绝对值的最大值);(2)存在自然数序列{d_l},d_1=q_0~l(d_(0l))使得d_l α_n∈O_k,n=0,1…,l,l=1,2,…,并且d_(0l)只被满足p≤c_2l的素数p整除,还有ord_(p)d_0l≤c_3logl.称f(z)属于F(K,c_1,C_2,c_3,q_0)类.有很多函数属于F函数类,例如超几何函数现在假设f_1(z)…,f(m)(z)∈F(K,c_1,c_2,c_3,q_0)类并满足线性微分方程组y_1~'=sum from j=1 to m (A_(ij)(z)y_j,A_(ij)(z)∈C(z),i=1,…,n.)

关 键 词:F函数 丢番图逼近 代数方程  

分 类 号:O151.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象