检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林增强[1]
出 处:《厦门大学学报(自然科学版)》2006年第1期5-9,共5页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金(10371101)资助
摘 要:与李代数的交叉与渗透是近年来有限维代数表示理论发展的重要特点之一.用Hall代数的方法实现李代数是一个有趣的问题.按照Asashiba的思路,本文利用Tubular代数的根范畴的Ringel-Hall李代数与2-Toroidal李代数的同构对应,在T(2,2,2,2),T(3,3,3),T(4,4,2),T(6,3,2)型Tubular代数的退化合成李代数上构造商代数,并证明它们同构于相应的D4,E6,E7,E8型单李代数,而且李运算完全由Hall积给出.作为例子文中还通过计算系数给出D4型单李代数的具体实现.In recent years, representation theory of finite-dimensional algebras has intersected and permeated through Lte algebras, which is one of the important features. It is an interesting problem on realization of Lie algebras via Hall algebras, According to Asashiba, it takes advantage of the isomorphic correspondance between Ringel-Hall Lie algebras which are realized by root categories of Tubular algebras and 2-Toroidal Lie algebras to construct quotient algebras of degenerate composition Lie algebras of Tubular algebras of type T(2,2,2,2),T(3,3,3),T(4,4,2),T(6,3,2). They are proved to be isomorphic to complex simple Lie algebras of type D4 ,E6 ,E7 ,E8. Moreover the Lie bracket is only given by the Hall multiplication. Then it is given an explicit realization of simple Lie algebras of type D4 by computing the coefficients .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7