检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《机械强度》2006年第1期83-87,共5页Journal of Mechanical Strength
基 金:国家自然科学基金(10372030);湖南省自然科学基金(02JJY4071)资助项目~~
摘 要:用局部PetrovGalerkin方法求解几何非线性问题,这是一种真正的无网格方法。这种方法采用移动最小二乘近似函数作为试函数;只包含中心在所考虑点处的规则局部区域上以及局部边界上的积分;所得系统矩阵是一个带状稀疏矩阵。该方法可以容易推广到求解非线性问题以及非均匀介质力学问题。在涉及几何非线性问题的数值方法中,通常都采用增量和迭代分析的方法。本文从虚功原理出发,用移动最小二乘近似函数的权函数替代虚位移,并在整个分析过程中所有变量的表达格式都是采用全拉格朗日格式。数值算例表明,无网格局部PetrovGalerkin方法在求解几何非线性问题时仍具有很好的精度。The local Petrov-Galcrkin method (LPGM) is applied to solving geometrically nonlinear problems. It is a new truly meshless method. The local Petrov-Galerkin method uses the moving least square approximation as a trial function, and involves only integrations over a regular local sub-domain and on a local sub-boundary centered at the node in question. A banded sparse system matrix is obtained. These special properties lead to a morn convenient formulation in dealing with nonlinear problems and non-homogeneous medium problems. An incremental and iterative solution procedure using modified Newton-Raphson iterations is used to solve the geometrically nonlinear problem. Formulations for the geometrically nonlinear problem are obtained from virtual work principle by using the weighted function of the moving least square approximation as a virtual displacement. All measures are related back to the original configuration. This technique is named as the total Lagrangian method. Several examples are given to show that in solving the geometrically nonlinear problem, the local Petrov-Galerkin method still has a good accuracy.
关 键 词:几何非线性问题 虚功原理 全拉格朗日格式 移动最小二乘法 局部PETROV-GALERKIN方法 无网格局部PETROV-GALERKIN方法 移动最小二乘近似函数 无网格法 局部区域 带状稀疏矩阵
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.68.255