检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈先中[1] 侯庆文[1] 柳瑾[1] 庄严[2] 孟广军[3]
机构地区:[1]北京科技大学信息工程学院,北京100083 [2]北华大学,吉林132021 [3]大庆油田化工集团,大庆163000
出 处:《北京科技大学学报》2006年第1期84-87,共4页Journal of University of Science and Technology Beijing
基 金:国家自然科学基金(No.60472095)
摘 要:为了建立工业污水pH值中和系统的正模型,研究了具有大滞后非线性特性的加药中和过程。利用一种动态自适应最近邻聚类(DANNC)学习算法,全面调整网络参数完成了污水pH值加药中和控制系统网络的学习和训练。采用中和过程神经网络内模控制系统的逆模型充当控制器,进行了各种工业条件下污水中和的仿真实验。结果表明,该系统实现了△pH≤0.2的工业污水的控制精度目标,系统实时跟踪和抗干扰性良好。In order to establish a positive model of pH value control, the process with severe non-linearity and serious lag of neutralization action was studied by adding medicine in an industrial waster water neutralization control system. A novel kind of Dynamic Adaptive Nearest Neighbor Clustering (DANNC) algorithm was adopted, and a strategy by adjusting the parameter in the entire neural network to finish the task of learning and training of the neural network (NN) was applied. The NN internal model control system for pH value of neutralization, which serves as a controller of the converse model was designed, and different kinds of simulation experiments were carried. The results showed that the accuracy of the pH control system is △pH≤0.2, which satisfied the requirement of the real time adding medicine track and anti-jamming abilities in industrial application.
关 键 词:工业污水 最近邻聚类学习算法 动态自适应调整 PH值 内模控制
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15