线段映射的局部变差增长与局部拓扑熵  被引量:1

On Pointwise Variation Growth and Entropy of Interval Maps

在线阅读下载全文

作  者:黄煜[1] 罗俊[1] 周作领[2] 

机构地区:[1]中山大学数学与计算科学学院,广州510275 [2]中山大学岭南学院,广州510275

出  处:《数学学报(中文版)》2006年第2期311-316,共6页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金项目;广东省自然科学基金资助项目;中山大学高等学术中心基金资助项目

摘  要:本文考虑闭区间上变差有界的连续映射f:I→I的局部变差增长γ(x,f)与局部拓扑熵h(x,f).将证明γ(x,f)≥h(x,f)对所有x∈I成立,并且局部变差增长映射γf(x)=γ(x,f)与局部拓扑熵映射sf(x)=h(x,f)都是上半连续的,得到一个变分原理:局部变差增长γ(x,f)与局部拓扑熵h(x,f)的上确界分别等于全局变差增长γ(f)=limn→∞1/nln Var(fn)与拓扑熵h(f).当映射f:I→I拓扑传递时,与Brin 和Katok对局部(测度)熵的讨论类似,我们证明,至多除一个不动点外,局部变差增长γ(x,f)与局部拓扑熵h(x,f)在开区间I°内恒为常值.This note considers the local growth rate of variation γ(x, f) and local topological entropy h(x, f) at points x ∈ I for a continuous map f on a compact interval I such that the total variation Vat (f^n) is bounded for all n ≥ 0. We will show that γ(x, f) is always no less than h(x, f) and that the functions x →γ (x, f) and x → h(x, f), which map a point x to its local growth rate of variation and its local topological entropy respectively, are both upper semi-continuous. We also obtain a variational principle: the supremum of the local growth rate of variation and that of local topological entropies are equal to the global exponential growth rate γ(f) = limn→∞1/n ln Var(f^n) of the total variations Var (f^n) and the topological entropy h(f), respectively. When the map f : I → I is topologically transitive, we infer that the local growth rates of variation and local topological entropies functions are both constant on I^o or on I^o minus a fixed point. This is similar to the almost everywhere constancy of local entropy considered by Brin and Katok.

关 键 词:有界变差 变分原理  

分 类 号:O182.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象