检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翁小雄[1] 谭国贤[1] 姚树申[1] 黄征[1]
出 处:《交通运输工程学报》2006年第1期103-107,共5页Journal of Traffic and Transportation Engineering
基 金:广东省科技攻关项目(2003A1010302)
摘 要:时间尺度大于15 min的城市交通流预测模型已无法满足交通信号实时控制和交通信息实时发布的需求,通过对广州市中心区交叉路口交通流长期观察和数据采集,分析了各种时间尺度的交通流特性,提出以路口信号周期作为时间尺度,绿灯流率作为变量的ARIMA(p,d,q)短时交通预测模型。以1个和3个信号周期的时间尺度为例,对城市交叉路口不同时间段交通流进行建模和预测。结果表明ARIMA(p,d,q)预测模型结构稳定,算法简单,时间尺度为3个信号周期的预测模型可以很好地保持交通流特征,均方根误差为0.015 9,预测精度较高。The long term prediction models (time scale is larger than 15 min) of traffic flow did not satisfy the demands of traffic signal control and traveler information real-time dissemination. After observing and measuring actual intersection traffic flow in Guangzhou city center area for long time, the paper analyzed the characteristics of varied-time-scale traffic flow, and proposed an ARIMA(p,d,q) model, in which signal periods were taken as time intervals, and the flow rates of green phase were taken as model variables for predicting the short-term traffic flow of urban intersection. By the case study of traffic flow modeling and predicting with different time-sections separately in 1 signal period and 3 signal periods, it is validated that the ARIMA(p,d,q) prediction model construction is stable, its arithmetic is simple, the prediction model in 3 signal periods can well keep the characteristics of short-term traffic flow, its accuracy is quite satisfied, its root-mean-sauare-error is 0. 015 9. 4 tabs, 5 figs, 9 refs.
关 键 词:交通工程 交通流特性 交通预测 短时间尺度 时间序列分析
分 类 号:U491.14[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147