矩阵值Stieltijes—Newton型有理插值  

Matrix Valued Stieltijes—Newton Rational Interpolants

在线阅读下载全文

作  者:王家正[1] 

机构地区:[1]安徽教育学院数学系,安徽合肥230061

出  处:《安徽教育学院学报》2006年第3期1-4,14,共5页Journal of Anhui Institute of Education

基  金:安徽省教育厅自然科学基金资助(2005KJ211)

摘  要:文章基于矩阵的广义samlson逆,将Stieltijes型矩阵分叉连分式与二元矩阵多项式结合起来,通过定义矩阵的差商和混合反差商,建立递推算法,构造的Stieltijes-Newton型矩阵有理插值函数满足有理插值问题所给的插值条件,并给出了插值定理的证明,最后利用数值例子,验证了所给算法的有效性。In this paper, based on matrix generalized samlson inverse, we incorporate bivariate matrix polynomials in Stieltijes' branched matrix continued fraction. By defining matrix inverse difference and blending inverse difference, and building the recursive algorithm, to structure bivariate Stieltijes-Newton's matrix rational interpolating function which interpolates the given supporting points. The rational function satisfies the given interpolating conditions by the problem of rational interpolation, and interpolating theorem and its proof is given. The end, anumerical example is presented to illustrate the efficiency of this algorithm.

关 键 词:矩阵 矩阵连分式 有理插值 samlson逆 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象