检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《江苏大学学报(自然科学版)》2006年第3期266-269,共4页Journal of Jiangsu University:Natural Science Edition
基 金:江苏省高校自然科学研究计划项目(04kjd130039)
摘 要:在反平面弹性情况下,采用在裂纹位置处放置分布位错的方法模拟裂纹,导出了求解圆域或含圆孔无限大域中多边缘裂纹问题的奇异积分方程.首先给出反平面弹性情况下,无限大域中多裂纹问题的复势函数.通过引入补充项,消除无限大域中多裂纹问题的解在圆域边界或圆孔周界上的作用,得到了圆域边界或圆孔周界自由的多边缘裂纹问题的基本解.再由裂纹边界条件建立以分布位错密度为未知函数的Cauchy型奇异积分方程.数值计算时,利用半开型积分法则求解奇异积分方程,得出位错密度函数的离散值,进而计算裂纹尖端处的应力强度因子.最后给出了两个算例,其结果表明所采用方法是可行和正确的,所得结果可以应用于工程实际.In antiplane elasticity, by placing distributed dislocations along cracks, singular integral equation can be formulated for the multiple edge-cracks problem in circular region or infinite region containing a circular hole. Firstly, complex potential of multiple cracks problem of infinite region in antiplane elasticity was given. Then in order to obtain the elementary solution satisfying traction-free condition along the circular boundary, a complementary term was introduced to eliminate the traction on the circle from the solution of the multiple crack in infinite region. Next by singular matching the traction along the cracks, Cauchy integral equations were obtained, in which the distributed dislocation density served as the unknown function. Finally, by using a semi-open quadrature rule, the singular integral equations were solved. Thus, the SIF values at the crack tips were calculated. Two numerical examples were given to verify this method. The results can be applied to actual projects.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42