检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
出 处:《计算机学报》2006年第6期928-935,共8页Chinese Journal of Computers
摘 要:利用邻近像素类别上的相关性,在采用EM算法对模型参数求解的过程中,以滤波方法引入像素的空间位置信息,降低了EM对初始值选择的敏感性.该算法在引入了像素的位置信息的同时,保持了EM算法的简单性,并为混合分量个数的选择提供了一种新的实现途径.对实际图像的分割结果证实了算法的有效性.Unsupervised learning of finite mixture models involves two open problems. The selection of the number of components and the initialization. To circumvent these problems in application to image segmentation, the paper integrates the filter technique into the EM algorithm. Unlike the standard EM algorithm, the proposed algorithm does not require careful initialization. It also does not need a model selection criterion to choose the suitable number of mixture components. Estimation and model selection can be integrated seamlessly in a single algorithm. Furthermore, the proposed algorithm can preserve the good traits of EM while making significant use of the spatial information in a reasonable amount of time. Experiment results on real images show that the proposed algorithm can provide fast segmentation with high perceptual quality.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222