广义旋转超曲面的法线刻画  

Characterizing hypersurfaces of generalized rotation through its normal lines

在线阅读下载全文

作  者:王晓洁[1] 酒霖[1] 

机构地区:[1]北京理工大学数学系,北京100081

出  处:《宁德师专学报(自然科学版)》2006年第2期117-119,共3页Journal of Ningde Teachers College(Natural Science)

摘  要:得到了伪欧氏空间里的超曲面是广义旋转超曲面一个充要条件,即存在一条直线与曲面的每一条法线相交或平行,特别的,所有法线都交于一点的超曲面只能是广义球面或它的一部分.作为上述结论的特殊情形,三维欧氏空间中的旋转曲面有同样结论.In pseudo- Euclidean space , a hypersurface is generalized rotation one, which is either a hypersurface can be expressed as graph locally or a cylinder, is sufficient and necessary that there exist a straight line either intersects or parallels all its normal lines. More over, the only hypersurface whose all normal lines have a point is just a generalized hyper - sphere or part of it. As a special case, in 3 - dimensional Euclidean space, a surface is rotational if and only if there exist a straight line either intersects or parallels all its normal lines. The only surface whose all normal lines have a common point is just a sphere or part of it.

关 键 词:旋转曲面 法线 伪欧氏空间 

分 类 号:G633.8[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象