检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北经贸大学数学与统计学学院应用数学教研室,河北石家庄050061 [2]军械工程学院应用数学与力学研究所
出 处:《数学的实践与认识》2006年第5期235-242,共8页Mathematics in Practice and Theory
基 金:国家自然科学基金项目(10471033)
摘 要:令E为实光滑、一致凸的Banach空间,E*为其对偶空间.令A E×E*为极大单调算子且A-10≠.假设{rn}(0,+∞)为实数列且满足rn→∞,n→∞,数列{αn}[0,1]满足∑∞n=1(1-αn)<+∞,对给定的向量xn∈E,寻找向量{x∧n}及{en}使之满足:αnJxn+(1-αn)Jen∈Jx∧n+rnAx∧n,其中{en}E为误差序列而且满足一定的限制条件.即而定义迭代序列{xn}n 1如下:xn+1=J-1[βnJx1+(1-βn)Jx∧n],n 1,其中数列{βn}[0,1]满足βn→0,n→∞且∑∞n=1βn=+∞,则{xn}强收敛于QA-10(x1),这里QA-10为从E到A-10上的广义投影算子.利用Lyapunov泛函,Qr算子与广义投影算子等新技巧,证明了引入的新迭代序列强收敛于极大单调算子A的零点,并讨论了此结论在求解一类凸泛函最小值上的应用.Let E be a real smooth and uniformly convex space with E* its duality space. Let A (∈)E×E* be a maximal monotone operator with A^-10≠Ф. Let {rn}(∈)(0, +∞) be a real sequence with rn→∞ as n→∞, let {an}(∈)[0,1] satisfy ∞∑n=1(1 - ax) 〈+ ∞. For a given vector xn∈E, find vectors xn and {en} such that anJxn. + (1 - an)Jen∈JXn + rnAXn, where {ex} (∈) E is the error sequence and satisfies some conditions. Then the iterative sequence {xn}n≥1 is defined as follow: Xn+1=J^x-1[βnJx1+(1-βn)JXn],n≥1, where {βn}(∈)[0,1] is a real sequence with βn→0, asn→as n →∞∑n=1=+∞ then {xn}is strongly convergent to QA-1(X1), where QA-lo is the generalized proonto operator form E onto A-10. A new iterative scheme is introduced which is proved to be strongly convergent to zero point of maximal monotone operator A by using the techniques of Lyapunov functional, Qr operator and generalized projection operator, etc. Moreover, the application of the new convergence theorem to solve the minimum value of one kinds of convex functional is being discussed.
关 键 词:LYAPUNOV泛函 极大单调算子 一致凸BANACH空间 Reich不等式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171