检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学电讯工程学院,陕西西安710077
出 处:《航空计算技术》2006年第2期36-39,共4页Aeronautical Computing Technique
摘 要:现代的三维数字化仿真方法的飞速发展,使得在安装ILS系统前,先对安装环境进行分析,优化仿真论证变成了现实。因此仿真模型的建立的现实有效性决定了仿真的准确度,然而,如果是ILS系统下滑信标,则要求比较严格,需要数学仿真结果和飞行检验结果相互论证才能确定仿真准确度,而且在分析论证已知地点的ILS安装同时还可以等效的获取飞行校验误差。数字仿真分析和飞行校验原则上应该遵守相同的约定规范。可是一些数字分析方法可以转译成飞行校验程序,另一些则不能。因为数字分析不仅可以借助任意辅助手段研究而且可以计算一些非常精细的和高需求的导航参数如DDM=0的航道。按照附件10的规定,利用数字仿真分析和飞行校验的相互论证可以精确的计算出下滑角和复飞点高度。重点讨论在复杂环境下下滑信标的分析优化论证问题。The development of modem tridimensional numerical methods enables the analysis and the optimization of ILS to be installed on difficult sites. The accuracy depends very much on the physical validity of the numerical model. In case of the classical ILS - glideslope the accuracy is reliable in such a way that the numerical results and the flight check results can be used mutually for verification purposes. Flight check errors can be detected directly by equivalent analysis of the given installation on the given site. The numerical analysis and the flight check apply in principle the same specifications. However, some methods of the numerical approach can be transfered to the flight check procedures. Others cannot be transfered, because the analysis can use arbitrary tracks in space and can calculate very specific but highly adequate parameters such as the common locus for DDM = 0. By this the glidepath angle and the crossing height can be calculated essentially correct according Annex 10. The detailed procedure for the analysis and the optimization of a classical glideslope on difficult site is described.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30